
Soar/PSM-E: Investigating Match
Parallelism in a Learning Production System

1Milind Tambe, Dirk Kalp, Anoop Gupta , Charles Forgy, Brian Milnes, Allen Newell

Department of Computer Science, Carnegie Mellon University, Pittsburgh, Pa 15213

Neomycin medical diagnosis task [19] and the Cypress algo-Abstract
rithm design task [18]. Soar exhibits a wide range of

Soar is an attempt to realize a set of hypotheses on the problem-solving, learning and human-like performance.
nature of general intelligence within a single system. Soar

Soar uses a production system that provides a singleuses a production system (rule based system) to encode its
representation for its knowledge base. Each knowledge baseknowledge base. Its learning mechanism, chunking, adds
item is represented by a condition-action rule, or production,productions continuously to the production system. The
that fires whenever its conditions match elements in workingprocess of searching for relevant knowledge, matching, is
memory. Soar uses chunking [9] as its sole learningknown to be a performance bottleneck in production systems.
mechanism; chunking creates new productions, chunks, thatPSM-E is a C-based implementation of the OPS5 production
summarize the results of problem solving and adds them tosystem on the Encore Multimax that has achieved significant
the existing set of productions. These chunks then fire inspeedups in matching. In this paper we describe our im-
appropriate later situations, providing a learning-transferplementation, Soar/PSM-E, of Soar on the Encore Multimax
mechanism.that is built on top of PSM-E. We first describe the exten-

sions and modifications required to PSM-E in order to support
Large and complex systems built in Soar are slow in theirSoar, especially the capability of adding productions at run

execution; this limits their utility. The dominating factor intime as required by chunking. We present the speedups
this slowdown is the production matching procedure. Asobtained on Soar/PSM-E and discuss some effects of chunk-
chunking adds new productions, the demands of matchinging on parallelism. We also analyze the performance of the
increase, so it is important to optimize the match as much assystem and identify the bottlenecks limiting parallelism.
possible. Researchers have been exploring many alternativeFinally, we discuss the work in progress to deal with some of
ways of speeding up the execution of the matching procedurethem.
in production systems: efforts have focused on high-
performance uniprocessor implementations [4, 10], as well as

1. Introduction parallel implementations [5, 6, 17, 12, 15, 21]. Most results
Soar is an architecture for a system that is to be capable of for parallel processing have been simulation results or the

general intelligence [8]. Its development started as an AI results of parallelization of slow Lisp-based implementations.
system in 1981 and it is now also under exploration as a The PSM-E implementation [6] of the OPS5 production
model of human cognition [14]. Soar has been exercised on a system [2] on the Encore Multimax multiprocessor, differs
large variety of tasks: many of the classic AI mini tasks such from other efforts: its C-based compiler writes highly op-
as the blocks world and the Towers of Hanoi, as well as large timized machine code to achieve significant speedups on ac-
tasks such as the R1 computer configuration task [16], the 2tual production systems .

1Department of Computer Science, Stanford University, Stanford, In this paper, we describe the Soar/PSM-E implementation
CA. 94305 of Soar, that uses PSM-E for match. We investigate the

available parallelism of the matching procedure for Soar sys-
Permission to copy without fee all or part of tems. Soar’s chunking mechanism provides a new dimension

this material is granted provided that the in the study of parallel production system match that is absent
copies are not made or distributed for direct in other investigations concerned with parallelism in non-
commercial advantage, the ACM copyright notice

learning production systems. Chunking continuously createsand the title of the publication and its date
appear, and notice is given that copying is by
permission of the Association for Computing

2Machinery. To copy otherwise, or to Certain production systems showed between ten to twenty times speedup
republish, requires a fee and/or specific per- over the original CMU Lisp implementation of OPS5 [6].
mission.

new productions; Soar’s production system must be able to Each CE is composed of a set of tests for a wme’s
incrementally compile chunks without large overheads, as all attributes’ values. All of the CE’s attribute value tests must
the gains of a highly optimized system such as PSM-E could be matched for that wme to match the CE. There are two
be lost by such overheads. As chunks arise automatically as a types of attribute tests: constant and equality. Constant tests
result of the problem-solving, they present various computa- check that an attribute of a wme holds some constant, usually
tional phenomena that do not appear in non-learning produc- a symbol or number. Most attribute tests are constant tests.
tion systems [20]. Soar/PSM-E provides a useful tool for An equality test binds a variable (syntactically any symbol
studying the previously unexplored effects of chunking on enclosed in "<" and ">") to an attribute’s value in the scope of
parallelism. a single production. The variables in these tests will, on first

occurrence, match any value, but if the variable appears again
This paper is focused on the parallel processing aspects of in a later test, then the attribute tested must hold the same

the Soar matcher, using the C-based PSM-E implementation. value. When the CEs of a production are all matched in
Hence, all measurements presented are of the match time. conjunction by some list of wmes, an instantiation of that
Other mechanisms of Soar, that have been left in their original production, which is the list of the matching wmes, is created
Lisp form, are unoptimized and dominate the system’s total and added to the conflict set (CS). OPS5 uses a selection
run time; they will be the subject of future work. procedure called conflict resolution to choose a single

production’s instantiation from the CS, which is then fired.
The paper is organized as follows: Section 2 presents back- When a production fires, the RHS actions associated with that

ground information on the OPS5 production system, the production are executed, in the context of the LHS’s variable
matching procedure used in OPS5 and the PSM-E implemen- bindings. Actions add or remove wmes and perform
tation. Section 3 presents a brief overview of Soar. Section 4 input/output.
describes the structure of the Soar/PSM-E system. Section 5
explains the extensions to PSM-E for Soar and discusses the Production systems repeatedly cycle through three phases:
various tradeoffs involved. Section 6 presents the results of match, select and fire. The matcher first updates the CS with
our measurements of Soar programs and analyzes the factors all of the current matches for the productions. Conflict resolu-
limiting our speedups. Section 7 proposes future work to tion selects one of these instantiations, removes it, and then
improve the match speedups for Soar programs. fires it. Figure 2-1 displays an OPS5 production and an

instantiation for the production.
2. Background

Soar uses a variation of OPS5 as its production system. It
also uses OPS5’s RETE matching algorithm. In this section
we briefly describe the OPS5 production system language and
the RETE matching algorithm. We then present a brief over-
view of the PSM-E implementation of OPS5. Readers
familiar with OPS5, RETE or our previous publications on the
PSM-E system may wish to skip one or more of these subsec-
tions.

2.1. OPS5
An OPS5 production system is composed of a database of

temporary assertions, called the working memory (WM), and a
set of if-then rules, or productions, that constitute the
production memory (PM). The assertions in WM, called
working memory elements (wmes), are record structures with
a fixed set of named access functions, called attributes, much
like Pascal records. Each production is a list of condition

)
(hand ^state free ^name robot-1-hand)
(block ^name b1 ^color blue ^state blocked)

(

An instantiation for the production

(hand ^state free)
-(block ^on <block>)
(block ^name <block> ^color blue)

(p blue-block-is-graspable

An OPS5 production

RHS

-->

(write "Block" <block> "is graspable"))

CE

LHS

ATTR.TEST

elements (CEs), corresponding to the if part of the rule (the
left-hand side or LHS), and a set of actions corresponding to Figure 2-1: An OPS5 production and its instantiation.
the then part of the rule (the right-hand side or RHS).

A CE is a pattern that tests for the existence, or absence, of
2.2. The RETE Matching Algorithma wme in WM. A CE may be optionally negated, i.e.,

The RETE matching algorithm [3] is a highly efficient al-preceded with a dash ("−"), signifying that it tests for the
gorithm for match that is also suitable for parallel implemen-absence of any matching wme. Each of the non-negated CEs
tation. The algorithm gains its efficiency from two sources.of a production must match a wme, and none of the negated
First, it stores the partial results of match from previousCEs may match, before the production is ready to fire, or is
cycles for use in subsequent cycles, exploiting the fact thatsatisfied.
only a small fraction of WM changes on each cycle. Second,

it attempts to perform tests common to CEs of the same and tiation for its production. If the token has a
delete flag and it has not yet been removed bydifferent productions, only once by sharing them in a directed
being fired, the production node removes the PIacyclic graph structure, or network.
from the CS.

The algorithm performs match using a special kind of data- 3. Memory nodes hold the partial state of the
flow network that is compiled from the LHS of productions, match by storing the set of the PIs whose tokens
before the production system is actually executed. An ex- have appeared at its single input link. If the
ample production and the network for this production is token, on its one input arc, has the add flag, its
shown in Figure 2-2. PI is added to the set; with the delete flag it is

removed. Memories always place their input
token on their output arc. These nodes make
RETE a state saving algorithm: it need only see
the changes to WM on each cycle to calculate
the CS’s contents.

4. And nodes combine PIs into larger PIs. These
nodes have two input arcs, called left and right;
each must be preceded by a memory node.
When a token arrives at an arc, its PI is com-
pared with all of the PIs in the opposite arc’s
preceding memory. Any pair which preserve
the variable bindings of the production that
compiled into the node are joined into a new PI.
These new PIs are sent out the output link for
further matching. The and node ensures that the
value bound to every variable in a CE is consis-
tent with the value bound to the same variable in
the preceding CEs of that production. And
nodes join the wmes that match CEs in a left to
right linear fashion.

5. Not nodes also have two input arcs: left and
right. Not nodes keep a memory of the items
that have passed in their left input and count the
number of items in the their right arc’s preced-

Eq (CE1.name, CE2.on)

state = free

Root

block
hand

color = blue

P

NOT

AND
True

(p blue-block-is-graspable

(block ^name <block> ^color blue)
-(block ^on <block>)
(hand ^state free)
--> (modify 1 ^state graspable))

Two input

Memory nodes

nodes

P nodes
ing memory, which match them. A not puts its
input item from its left link onto its output onlyFigure 2-2: An example production and its network.
if there are no PIs in the right memory that
block it by matching. Not nodes implement
negated conditions by only passing partial in-This data-flow network passes items called tokens across its
stantiations that do not have a match for a

arcs between its nodes. Each node has one or two input arcs negated CE.
and zero or one output arc. There are three types of one input
nodes: constant, production (P) and memory; and two types of The majority of node activations are for constant test nodes.
two-input nodes: and and not. Each token contains an add or However with suitable indexing techniques, these may be
delete flag and a partial instantiation (PI), i.e., a list of wmes, reduced by almost half [5]. Since one-input nodes are much
matching CEs. simpler to execute than than two input nodes, close to 90% of

1. Constant test nodes implement the constant at- the processing time in an optimized implementation is spent
tribute tests. The top of the network is com- in the two-input nodes.
posed only of these and forms a network that
discriminates wmes based on the constants they 2.3. PSM-E: Parallel Implementation of OPS5 on
contain. Each constant node receives a token, the Encore Multimax
on its one input, that contains only one wme in PSM-E [6] is a highly optimized C-based parallel im-
its PI. If its wme has a certain constant for some plementation of the OPS5 production system on the Encore
attribute’s value, then it sends it out its single 3Multimax . It produces a machine coded version of theoutput arc.

RETE data-flow network. Before starting a run, the PSM
2. P nodes are the terminal nodes of the network.

They add and delete instantiations of produc-
tions from the CS, and so need no output link.
When a token arrives on its input, if it has an 3The Encore Multimax is a 16-CPU shared memory multiprocessor. The
add flag, its PI is added to the CS as an instan- machine employed for this research used the NS32032 processor, which runs at

approximately 0.75 MIPS.

compiler generates a tree structured representation of the new context element are added to the system and the older
RETE network for the current set of productions. This data wmes are removed. If a decision cannot be reached, then an
structure is used to generate OPS83 [4] style assembly code impasse results and the system creates a subgoal to solve the
for the network. The system then uses the assembling, linking impasse. This subgoal allows Soar to bring to bear the full
and loading facilities provided by the operating system to power of its problem solving capability on the impasse. All
create the executable image. of Soar’s goals are sewn together in a stack called the context

stack. Each goal entry in the context stack is represented
PSM-E consists of one control process that selects and then using three wmes: one for the problem space chosen to solve

fires an instantiation and one or more match processes that this goal, one for the state from which problem solving is
actually perform the RETE match. PSM-E exploits paral- progressing and one for the current operator.
lelism at the granularity of node activations. Previous work
has demonstrated that to achieve significant speedups via Chunking is Soar’s sole learning mechanism. It generalizes
parallelism in production systems, it is necessary to exploit and caches the results of problem-solving as new productions.
parallelism at a very fine granularity [5]. A node activation These productions may then fire in similar situations, prevent-
consists of the address of the code for a node in the RETE ing impasses and reducing the problem-solving effort.
network and an input token for that node. These node activa- Chunking works by recording the wmes of each instantiation
tions are called tasks and are held in one or more shared task and the wmes created by firing that instantiation. When a
queues. Each individual match process performs match by wme is created that is accessible from any context, other than
picking up a task from one of these queues, processing the the most recent context, chunking builds a new chunk to
task and, if any new tasks are generated, pushing them onto summarize the creation of this result wme. Chunking per-
one of the queues. When the task queues becomes empty, one forms a dependency analysis by searching backward through
production system cycle ends; the control process applies the instantiation records to find the wmes that existed before
conflict resolution to select and fire an instantiation from the the result context that were used to generate this result. It
CS. Exploiting parallelism at the level of node activations then constructs a new production whose LHS is based on
allows PSM-E to achieve significant speedup for match using these wmes and whose RHS reconstructs the result. This
up to 13 processes [6]. chunk can then recreate the result wmes without hitting the

impasse; this prevents the impasse from reoccurring and
speeds problem solving.3. Soar

The goal of the Soar project is to build a system capable of
Soar systems can be run without chunking, i.e., with chunk-

general intelligent action. Soar is based on the problem space
ing turned off. We will refer to this as the without chunking

hypothesis [13], which states that all goal-oriented behavior is
run. We will refer to the runs with chunking turned on, as

search in problem spaces. The problem space determines the
during-chunking runs. In these runs, the performance system

set of legal states and operators that can be used during the
learns while it is solving a problem. After chunking on an

processing to attain the goal. The states represent situations.
input, sometimes Soar systems are run on the same input, to

There is an initial state representing the initial situation, and a
test the efficiency of the learned rules. We will refer to these

set of desired final states. An operator is applied to a state in
as the after-chunking runs.

the problem space to yield a new state for that problem space.
When an operator application generates a desired state, the It is already well established that the addition of chunks
goal is achieved. improves the performance in Soar a great deal, when viewed

in terms of subproblems required and the number of decisions
Soar is composed of three modules: Decide, chunking and a

within the subproblem [19]. However, in one of the examples
production system. Decide is a universal subgoaling

presented in this paper, chunking causes an increase in total
mechanism [7], and is responsible for the creation and dele-

match time and hence total run time. In a high level view,
tion of all of the system’s goals, as well as the selection of

which measures gains in terms of the number of decisions,
problem spaces, states and operators. We also refer to Decide

certain computational effects [20] are ignored. These effects
as the performance system of Soar. Decide works in a two

may cause the time per decision to increase drastically, com-
phase loop: elaborate and decide. In the elaboration phase, all

pletely offsetting match time gains. In this paper, however,
the productions in the system are matched (by the production

we will not address such cost/benefit issues of chunking, and
system) to determine the CS. However, unlike OPS5, all of

concentrate instead on the total match time.
the instantiations in the CS are then fired in parallel. This
constitutes one elaboration cycle within the elaboration The production system in Soar is similar to OPS5 with
phase. If this results in new instantiations, then the elabora- modifications, some of which are listed below:
tion phase continues by entering another elaboration cycle. • RETE must support the run-time addition of
This process continues until quiescence is reached, i.e., when productions, unlike OPS5, and must update the
no more instantiations are generated. At the end of the memory nodes of the production with the current
elaboration phase Soar enters the decision phase. If a deci- contents of WM, and the CS with the instan-
sion can be reached about the problem space, state or operator tiations for this production.
(the context element) to be used, then the wmes related to the

• OPS5’s negated condition elements cannot test
for the absence of a conjunction of matching
wmes. Soar adds LHS syntax and modifies the
RETE to support these conjunctive negations.

• The Soar CS differs from OPS5 in that all
productions may be fired in parallel.

• Soar systems use collections of smaller wmes to
represent data that an OPS5 program would typi-
cally represent in a single wme.

• Soar productions only add wmes. The decision
module keeps track of which wmes are accessible
from the context stack, and automatically garbage
collects inaccessible wmes.

We used three Soar programs to examine the various
aspects of the implementation and the results of parallelism:

1. Cypress-Soar [18], an algorithm design system
with 196 productions. We chose a run that
derives the quick-sort algorithm.

Process

Match

&

process

control

PSM-ESoar

INSTANTIATIONS

(Without
a matcher)

CONTEXT-DECISIONS
CHUNKS

ProcessProcess

MatchMatch

PSM-E match processes

Queue

Task

Figure 4-1: The organization of the Soar/PSM-E system.2. Eight-puzzle-Soar, a system that solves the
eight-puzzle mini task with 71 productions [9].

3. Strips-Soar, a system that plans in the domain of
In the above description of Soar/PSM-E, we have usedRobot control [1] with 105 productions.

PSM-E to imply a modified version of the PSM-E implemen-
tation of OPS5. In the next section, we describe the modifica-4. Organization of the Soar/PSM-E System tion required to PSM-E in order to support Soar.

The Soar/PSM-E implementation of Soar on the Encore
consists of one Soar process that maintains all the

5. Extensions Required to Support Soarfunctionality except the capability of matching; a PSM-E con-
The implementation of Soar on the PSM-E required manytrol process, and one or more PSM-E match processes. The

changes to be made to PSM-E. In this section, we describenumber of match processes remains fixed for the duration of a
the most significant change made to PSM-E: the capability ofparticular run.
adding productions at run-time in order to support chunking
in Soar. The first subsection describes the run-time codeWe are planning a full port of Soar to C, but our current
generation for new productions. Soar also requires that thestructure allows us to concentrate on our primary goal of
memory nodes of the newly added production be updatedinvestigating parallelism in the match. Unfortunately, as Lisp
with the current contents of WM, so that the chunk can beand C processes cannot share memory on the Encore, this
made immediately available for use. The second subsectionarrangement causes some data structures to be duplicated in
describes our solution to this updating problem.Soar and PSM-E. Further, Soar and PSM-E can communicate

4only through Unix pipes.
5.1. Run Time Addition of Productions

Soar/PSM-E operates in a mode where Soar uses PSM-E as The problem of adding a new production at run-time on the
a matching engine. Both Soar and PSM-E keep a copy of PSM-E is significant because it requires that the production
WM. As the Decide module adds or deletes wmes, it sends be compiled into machine code, like the rest of the system.
messages to PSM-E to repeat those operations on its wmes. If Interpretive techniques, though simple, are not suitable be-
this adds new instantiations to the PSM-E CS, then as PSM-E cause execution speed is very important. To exploit the
fires these instantiations it also sends copies of them over to benefits of node sharing, the new code must also be in-
Soar, so that Soar may also fire them. tegrated into the existing machine code for the rest of the

network. Recall that the RETE network shares common tests
Both Soar and PSM-E then fire these instantiations, updat- and nodes between different productions to save work at

ing their copies of WM and repeating match. If new chunks run-time. Sharing is especially important in Soar, since
are created, Soar passes them over to PSM-E at the end of the chunks are generated from the existing set of productions.
elaboration cycle. This organization is depicted in Figure 4-1. Therefore, schemes for compiling the chunk as a separate

piece of code are ruled out, because they are too inefficient.

Soar adds chunks only at the end of an elaboration cycle,
i.e., when the match is quiescent. This eliminates the com-

4Unix is a registered trademark of Bell Laboratories.

plexity of synchronizing and modifying the code while the fore, a successful parent node activation has to execute the
match processes are executing. However, the code generation following sequence:
for the newly added production must be efficient, so that this 1. Place the c1-activation into the task queue.
processing itself does not become a serial bottleneck. This

2. Place the cnew-activation into the task queue.efficiency requirement rules out using the assembler provided
by the operating system, since forking off a process to as- 3. Execute next-code.
semble and then link and load generates an unacceptably large
amount of overhead. To speed up the compilation of the
chunks, the production system compiler used to generate the
assembly code on the PSM-E was modified to generate
machine code directly and was included as part of the run-
time system. Two mechanisms are used to make the compila-
tion faster and provide sharing. These mechanisms are :

• A tree data structure that provides a high level
description of the RETE network. This is similar
to the structure shown in Figure 2-2.

• A jumptable to integrate the new code with the
existing code. Figure 5-1 shows a jumptable. It
shows an indirect jump to the label-12 through
the second index in the jumptable.

The run-time addition of productions is illustrated below with
a simplified example.

P-new

P-old

Root

(block ^name <block> ^color blue)
(p blue-block-can-be-placed-on-table

--> (modify 1 ^state on-table))
(place ^table free)

-(block ^on <block>)

Production: P-new

Jump = 100
cnew

table = free

state = free

parent

color = blue

Jump = 50
c1

place

block

hand

(p blue-block-is-graspable

(block ^name <block> ^color blue)
-(block ^on <block>)
(hand ^state free)
--> (modify 1 ^state graspable))

Production: P-old

Figure 5-2: Adding a production at run-time.

The Jumptable

Label-100

Label-97

Label-12

Label-1

Jump Label-12Jump Table[2]

.

.

.

Figure 5-1: The jumptable mechanism. An area of shared memory is reserved for generating
cnew-code, the code for the node cnew. The node cnew is
given an entry into the jumptable (with the index of 100 in

The Figure 5-2 shows a production P-new (depicted by this case). The following sequnce of assignments is then
bold lines) being added to an existing production P-old in the used:
system. P-new shares some nodes, corresponding to its first

Jumptable [100]:= Jumptable [50];two CEs, with existing nodes in P-old. To locate these shared
nodes, a high level data structure, similar to the one shown in

Jumptable [50]:= Code for queuing thethe diagram is maintained by the system. On the Soar/PSM-
node cnew;E, when an activation for the parent node in P-old succeeds, it

queues an activation for the successor node c1, into the shared This causes the successful parent-activation to place both
task queue. The jumptable contains an entry (with the index the c1-activation and the cnew-activation into the task queue
of 50 in this case) for the node c1. This jumptable entry before it goes on to execute nextcode, as it did before. A
maintains a pointer to next-code, the section of the code to be process which picks up the cnew-activation then executes the
executed by a process, after it places the c1-activation into the cnew-code. Thus the jumptable maintains a link between any
task queue. When the node cnew is added as the successor of two sections of code, between which the code for a new node
the parent node, it requires the parent node activation to could in principle be inserted. An entry for a node in the
queue a cnew-activation along with the c1-activation. There- jumptable points to the section of code to be executed after

queueing that node in the the task queue. The process of system. The time to compile the chunks appears in the third
integration of the new code then reduces to changing entries column. The fourth column gives the time to compile the
in the jumptable. In reality, the procedure of adding new chunks when sharing in the two-input nodes is turned off.
nodes is complicated by a large number of special cases. Two Sharing requires that the RETE data-structure be searched for
issues can be raised about the jumptable: points to share. The numbers in Table 5-2 show that even

with that overhead, the code generation time for the version1. The overhead of the jumptable during match in
with sharing is less than the time to generate code for thethe three programs has been measured to be

about 1-3%, much less than the 20-30% loss due unshared version. This is because sharing reduces the amount
to an unshared network (see below). of code generated. We are currently investigating the use of

parallelism to reduce this time.2. When there are two or more successors to a
node, then only one jumptable entry is main-

5.2. Run Time Update of Statetained for all of the successors together. Thus
As mentioned in Section 2.2, RETE is a state-saving algo-the size of the jumptable has not been an issue.

rithm, i.e., it saves the partial results of the match in the
various memory nodes in the network. When chunks areTables 5-1 and presents some data about the chunks added
added at run-time, the unshared memory nodes of the chunksin the three systems. The first column names the tasks. The
are empty. The empty memories must be updated with PIssecond column lists the average number of CEs in the task’s
representing the partial matches of the WM contents to theSoar productions. The third column gives the average number
new production. The updating procedure of the newly addedof CEs in the chunks. The fourth column gives the amount of
chunk has to ensure that no duplicate state is added to pre-code generated per chunk. The fifth column gives the amount
existing memory nodes, that already contain the requiredof memory used per a two-input node.
tokens. The update procedure must not become a serial

Task Avg. Avg. Avg. Avg. bottleneck by being very complex.
nbr. of nbr. of nbr. of nbr. of
CEs in CEs bytes/ bytes/ A simple method of updating the node memories for the

the in the chunk 2-input
new production would be to pass the contents of WM backTask Ps chunks node
through the network and permit only those node tasks as-

Eight-puzzle 18 36 7,900 219 sociated with the new production to execute. However, some
of the nodes associated with the new production are sharedStrips 13 34 8,500 250
with existing network, and therefore such a scheme would add

Cypress 26 51 15,500 304
duplicate state to those nodes resulting in incorrect behaviour
in the execution of the program.Table 5-1: Number of CEs per chunk.

The updating must therefore be confined to only the newTwo points can be noted from the data provided here. First,
nodes. The identification of the new, and unshared nodes, isthe chunks produced have about two to three times more CEs
facilitated by the fact that the RETE network is linear, i.e.,than the original hand-coded Soar productions. Second, even
once one node in the production loses sharing, all its descen-with sharing, the current PSM technique of coding chunks
dents remain unshared. Therefore, a simple node ID schemerequires 250 bytes/two-input node. This large size is due to
allows the identification of the nodes to be updated. All nodesthe inline expansion of procedures. However, if these calls
in the network have incrementally assigned unique ID num-are closed coded, then with some inefficiencies, the size of
bers and a newly added node is always assigned an ID greaterthis code can be reduced to about 15-20 bytes per two-input
than any other existing node in the network. Identifying thenode.
IDs for the last shared node and the first new node allows the

Task Number Time Time determination of all nodes that are required to be updated.
of chunks spent in spent in The algorithm runs the entire WM through the normal net-

added adding the adding the work with only two local modifications. First, the task queues
chunks chunks

are changed to ignore tasks with IDs less than the first new(sec) -unshared
node. Second, the last shared node must be specially executed(sec)
in order to pass down all the of the PIs that it has stored as

Eight-puzzle 20 23.7 25.5
state. In Figure 5-2, the node labeled parent is the last shared

Strips 26 31.5 34.7 node. The node labeled cnew is the first new node. The
algorithm will update the memories corresponding to cnew,Cypress 26 56.7 60.2
without adding duplicate state to parent. As the existing task
queue and network structure is used, with only minimalTable 5-2: Time for compiling chunks at run-time.
modification, the full parallelism of the match is available to

Table 5-2 shows the time spent in compiling chunks at speed up the state updating process.
run-time. The first column gives the name of the task. The

Sharing in the network reduces the number of node-second column gives the number of chunks added to the

activations and provides good speedups. Sharing the two-
input nodes provides a gain of about 20% in the Eight-puzzle
task and 25% in Strips during the update phase. The speedup
provided by sharing two-input nodes in the runs after chunk-

5ing, is about 30% in the Eight-puzzle task and 20% in Strips .
It can be seen that with the systems adding about 30 chunks,
substantial gains have been made. With systems that add
large numbers of chunks, more gains could be expected. The
next section discusses how the update algorithm benefits from
parallelism.

6. Results and Analysis
In this section we present and compare the speedups for our

three tasks with a varying number of match processes and
discuss the effects of chunking on parallelism. We also
present a detailed analysis of the speedups observed.

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

S
pe

ed
up

s

0 2 4 6 8 10 12 14

Number of Match Processes

 Eight-puzzle: Uniproc. 37.7
 Strips: Uniproc. 43.7
 Cypress: Uniproc. 172.7

We make one assumption about the match to correct for a Figure 6-1: Speedups without chunking,
single task queue.feature of the current Lisp-C implementation. The match

starts only after all the wme changes corresponding to an
elaboration cycle are finished, rather than after the first wme

during a node-activation and thus improves the performancechange. The PSM-E control process is responsible for all the
of RETE. One hash table is used for all the left memory nodeswme changes in an elaboration cycle. However, since the
in the network and the other is used for all the right memoryprocess simultaneously communicates with Soar, its rate of
nodes. The hash function that is applied to the tokens takesexecution of wme changes is much reduced, and this slows
into account (1) the variable bindings tested for equality at thedown the entire system. This is a temporary state of affairs.
two-input node, and (2) the unique node-ID of the destinationWhen the Decide and chunking modules are ported to C, this
two-input node. This permits quick detection of the tokenscommunication bottleneck will disappear. Thus, we have cur-
that are likely to pass equal variable tests. These hash tablesrently compensated for this factor by letting all wme changes
are shared among all the processes. A single lock controls thein a cycle complete before starting the match.
access to a line, i.e., a pair of corresponding buckets from left
and right hash tables. This lock provides a spot of contention6.1. Speedups Without Chunking
for the various processes.Figure 6-1 presents the speedups for the three tasks run

without chunking. The figure also shows the uniprocessor
The contention for a hash bucket lock can be measured bytimes (in seconds) for the three tasks. The numbers along the

the number of times a process spins on a lock before it getsX-axis represent the number of match processes, i.e., this
access to a line of hash table buckets. For the left tokens,number does not include the PSM-E control process. The
which activate the two input nodes from their left inputs, thespeedups are measured for runs with a single shared task
contention is low in Cypress and Eight-puzzle  1 or 2queue. The speedups in all three tasks are fairly low: the
spins/access  with up to 13 match processes. But, the con-maximum speedup is about 4.2 fold. In fact, the speedup
tention in Strips is higher: about 15 spins/access when rundecreases with more than 9 match processes.
with 13 processes. The graph in Figure 6-2 displays this
difference. The graph presents the total number of accessesThe low speedups and the decrease in the speedup with an
for one bucket in one elaboration cycle; the accesses may notincreasing number of processes indicate some form of conten-
really be concurrent. However, the total number of accessestion for shared memory objects. In our system, there are two
is an upper bound on the number of concurrent accesses andshared memory objects: the memory nodes of the RETE
gives an indication of the number of concurrent accesses. Thealgorithm and the single shared task queue.
graph is to be interpreted as follows: in Eight-puzzle and

The RETE algorithm stores tokens in the memory nodes. Cypress, 70% of the time, there is only one left token access-
As mentioned in Section 2.2, most of the time in match is ing a bucket in a cycle. Thus 70% of the time, the left tokens
spent processing two-input node activations. Hashing the con- will not contend with any other left-token. In Strips, this is
tents of the associated memory nodes, instead of storing them true only 40% of the time. Furthermore, in Eight-puzzle,
in linear lists, reduces the number of comparisons performed there are never more than four left-tokens trying to access the

same bucket in one cycle. While in Strips, about 18% of the
time, there are more than four tokens accessing the same

5The initial set of productions in Cypress task are unusually big, with an bucket in one cycle.
average size of 26 condition elements. Due to some problems with the
assembling of these productions, the network for the task had to be broken up, For right tokens, that activate the two-input nodes along the
and so no reliable figures for sharing are available for Cypress.

processes. This increase implies a larger waiting time for the
processes before they can push or pop tasks from the queue:
explaining the saturation with about 8-10 processes. It is
interesting to note that the contention for all the three tasks
rises at approximately the same rate. This can be explained
by:

• The code for locking the queue is the same in all
three tasks, thus locking requires similar amounts
of processing.

• The individual tasks in each of the three tasks
require similar amounts of processing (described
later in this section).

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

P
er

ce
nt

 le
ft

to
ke

ns

0 2 4 6 8 10 12 14 16

Number of accesses per bucket per cycle.

 Eight-puzzle
 Strips
 Cypress

Figure 6-2: Contention for the Hash buckets.

right inputs, the contention for the lock is very low  1 or 2
spins/access  in all three tasks, and it does not change by
increasing the number of processes. This is because the right
tokens are distributed evenly and most right tokens typically
require very little processing [5]. The right and the left tokens
do not typically contend with each other, as the right tokens
are evaluated in the beginning of the cycle; while the left

6tokens are evaluated only later in the cycle . 0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

S
pi

ns
/ta

sk

3 4 5 6 7 8 9 10 11 12 13

Number of Match Processes

 Eight-puzzle
 Strips
 Cypress

However, even the higher contention for left-tokens in
Strips is comparable with the average hash bucket contention Figure 6-3: Task-queue contention with increasing
for the OPS5 programs [6]. The reason for this low conten- number of processes.
tion is the special nature of the Soar productions. By neces-
sity, each CE in a Soar production is linked to a previous CE
in that production via an equal variable test. Since hashing is The dip in the speedup curves in the three tasks (when the
dependent on the equal variable test, the tokens get distributed number of processes reaches 13) in Figure 6-1, can be ex-
evenly. OPS5 tasks do not have such restrictions, which can plained by the phenomenon of failed pop operations. When a
sometimes cause an uneven distribution of the tokens in the task is pushed into a queue, all the idle processes try to access
hash-table. In these OPS5 programs, more aggressive locking that task. However, only one of them can get that task. The
schemes were seen to improve performance, but at the cost of efficient way of informing other processes about the empty
some overheads [6]. This indicates that adapting aggressive queue is to let them lock the queue and find the empty queue
locking schemes in Soar is not appropriate, even in Strips, for themselves. These failed pop operations increase with an
since the gains are too low to be justified by the overheads. increasing number of processors, and interfere with the opera-
Furthermore, since the hash table is not the source of the tion of the system. This leads to a slowdown.
contention, it must be for the other shared memory resource in
the system: the single task queue. This contention for the task queue can be reduced by the

introduction of multiple task queues. Every process has its
The contention for the task queue can also be measured in own queue, onto which it pushes and pops tasks. If it runs out

terms of spins on the queue lock before a process gets hold of of tasks then it cycles through the other processes’ task
a task. Figure 6-3 shows this contention as a function of the queues, searching for a new task. Figure 6-4 presents the
number of processes. The graph shows the increase in conten- speedups for the three tasks with the introduction of multiple
tion for the tasks (spins/task) with the increasing number of task queues. The graph shows that, as expected, parallelism

has increased in all three tasks. The maximum speedup is
seen in both Strips and Cypress: about 7 fold. Measurements
of the task-queue contention show that with 13 match

6This is further emphasized by the big reduction in contention for the processes, the number of spins/task has reduced to about 2-3.
hash-table locks by the introduction of complex locks in [5]. The complex locks
allow only similar (left or right) tokens to be processed in a pipelined manner,

It is interesting to look at the granularity of the tasks ex-yet the reduction is seen.

6-4 are a weighted average of the speedups for the individual
elaboration cycles of Figure 6-5.

These numbers are presented for Eight-puzzle; but they are
representative of other Soar systems. These speedups were
measured on a system with 11 match processes, so the max-
imum speedup obtainable in any one cycle should be 11.

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

S
pe

ed
up

s

0 2 4 6 8 10 12 14

Number of Match Processes

 Eight-puzzle: Uniproc. 37.7
 Strips: Uniproc. 43.7
 Cypress: Uniproc. 172.7

Figure 6-4: Speedup without chunking, multiple
task queues.

ecuted on the PSM. Table 6-1, gives the time per task and
total number of tasks generated in a run for the three systems.
These figures show that the tasks are executing at ap-

7proximately 400 microseconds on the 32032 processor .
0.00

2.00

4.00

6.00

8.00

10.00

12.00

S
pe

ed
up

s
ob

ta
in

ed
0 200 400 600 800 1000 1200

Number of Tasks/Cycle

Program Uniproc. Total Avg. Figure 6-5: Eight-puzzle: Speedups as a function
time number time of Tasks/cycle.
(sec) of tasks per task

executed (µs)

Eight-puzzle 37.7 87974 428 Two separate phenomena are observable in this graph:
Strips 43.7 99611 438 1. There are some cycles with a large number of

tasks that show low speedups, e.g., there is a
Cypress 172.7 432390 400

group of cycles with about 300 tasks/cycle that
shows around 3 fold speedup.Table 6-1: The granularity of the tasks on the PSM.

2. The cycles with fewer tasks in general show low
We have seen in this section that the only source of conten- speedups compared to cycles with higher num-

tion in the system was the single task queue. However, even bers of tasks. In fact in some of the smaller
after removing this source of contention by the introduction of cycles, speedup is less than 1.
multiple task queues, the speedups are much less than the

The occurrence of large cycles with low speedups can beideal (linear) speedups. This problem can be seen to be par-
understood if the number of tasks in the system (which is theticularly acute in the Eight-puzzle system.
sum of the number of tasks waiting to be processed and those
being processed) are plotted as a function of time in those6.2. Causes of the Low Speedups
cycles. Figure 6-6 shows such a plot for one of the cycles inAs described in the earlier section, it is clear that some
Eight-puzzle with about 300 tasks. This trace was taken for anphenomena other than contention for shared memory objects
execution of the task with 11 match processes. For presen-are responsible for limiting the achievement of ideal
tation purposes, the graph was truncated at 25 tasks. The timespeedups. To understand these phenomena, it is necessary to
is measured in units of 100 microseconds.look at the speedups obtained in individual elaboration cycles.

As explained before, computation in Soar proceeds in
This trace shows that in the earlier part of the cycle, there issynchronous elaboration cycles. Figure 6-5 presents the

enough work for every process, and there exists a high poten-speedups obtained in each cycle as a function of the number
tial for parallelism. However, after 200 time units, the systemof tasks (tokens) executed in that cycle. The speedups ob-
keeps processing a few tasks; each time generating only a fewserved in the eight puzzle with 11 match processes in Figure
new tasks. This behaviour is caused by the presence of long
chains of dependent node activations, long chains,  caused
by a production with large numbers of CEs [5]. Long chains

7The variation in the time for executing a task is from about 200 µs to 800 are commonly seen in the chunks built in many Soarµs. The run without chunking has a large number of the smaller tasks.

0.00

5.00

10.00

15.00

20.00

25.00

30.00

N
um

be
r

of
 ta

sk
s

in
 th

e
sy

st
em

0 100 200 300 400 500 600

Time

Peak at (100, 140)

Figure 6-6: Eight-puzzle: Cycles with large numbers
of tasks and low speedups

systems [20]. A part of a long chain from the Strips system is
shown in Figure 6-7  only a part is shown, since the chain
has 43 CEs in it.

The impact of long chains on speedups increases with in-
creasing number of processes. With more processes, the
system can get through the earlier part of the computation (the
one marked up to the first 200 time units, in Figure 6-6)
faster, but it cannot get through the long chain any faster, it
will still require about 300 time units of computing.

(state <s> ^door-status <rclk-rpdp>)

(state <s> ^door-status <rclk-rram>)
(door-status <rclk-rram> ^status closed)

(door-status <rclk-rpdp> ^status open)

(problem-space <p> ^name Strips)
(goal <g> ^state <s>)
(state <s> ^object <robby>)
(object <robby> ^name robby-the-robot)
(object <robby> ^type robot)

(object <rclk-rram> ^name rclk-rram-door)
(object <rclk-rram> ^type door)

(object <rclk-rpdp> ^name rclk-rpdp-door)
(object <rclk-rpdp> ^type door)

.

.

.

(goal <g> ^problem-space <p>)
(Production Monitor-Strips-State

.

.

.

CE3

CE4

CE5

CE6

CE2CE1

Figure 6-7: A long chain production.To counter such long chains, we plan to introduce a
constrained bilinear network organization. This organization
is shown in Figure 6-8. It reduces the length of the chain to

2. Long Chains: In cycles with a small number of15 CEs. The matching in all of the CEs in the production is
tasks, relatively short productions may have too

constrained by the matches for the first few CEs. Without the
much implicit sequentiality in their node execu-

constraint, a combinatorial explosion of state would be tion. Even though the cycle may have as many
generated [5]. Currently, our compiler is not equipped to as 100 tasks, at no time will more than four or
handle such network organization. We plan to develop the five tasks be concurrently available. This
compiler technology to deal with these kinds of bilinear produces a very flat graph of the number of

8network . tasks across time.

3. Tail-end effect: Although many of these cyclesThe other problem for parallelism is the small elaboration
do have more concurrently available tasks thancycles, at the far left of Figure 6-5. Three factors contribute
available processes, they may not be evenly dis-to this phenomenon:
tributed. The first half of these cycles exhibits

1. Overhead: There is a certain overhead as- good parallelism, but the second half is marked
sociated with each cycle. This is caused by mul- with a very uneven availability of tasks. This
tiple processes having to check all of the task produces a task graph that has a large hump in
queues and to inform the control processor its first half and then bounces between 1 and 10
about the completion of the match. If very few available tasks in its second half.
tasks are generated in a cycle (0-10), the over-
head causes a slowdown. These effects underscore some of the difficulties in

scheduling via task queues. Those parts of an elaboration
cycle with large numbers of tasks in them require multiple
task queues to avoid contention. But, near the end of the8Constrained bilinear networks are also useful for the conjunctive negations
cycle, fewer task-queues (about one-two) are required, so that a construct used in Soar for testing the absence of a set of wmes. Currently

we use a weak version of the constrained bilinear networks presented here to the tasks in the queues can be located easily. However, detect-
match them.

phase of the during-chunking run. The speedup is calculated
over the time spent in updating the entire set of chunks. The
graph shows a high speedup obtained in the update phase.
There are two reasons for the high speedup: (1) The entire set
of wmes is matched, providing a high opportunity for paral-
lelism (2) Matching the chunks while updating them allows a
high degree of parallelism.

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

S
pe

ed
up

s

0 2 4 6 8 10 12 14

Number of Match Processes

 Eight-puzzle: Uniproc. 16.0
 Strips: Uniproc. 39.9
 Cypress: Uniproc. 85.15

Figure 6-9: Speedups in the update phase,
multiple task queues.

.

.

.

(Production Monitor-Strips-State
(goal <g> ^problem-space <p>)

(goal <g> ^state <s>)
(problem-space <p> ^name Strips)Gr1

(state <s> ^object <robby>)

(object <robby> ^type robot)
(object <robby> ^name robby-the-robot)Gr2

(object <rclk-rram> ^type door)
(object <rclk-rram> ^name rclk-rram-door)
(door-status <rclk-rram> ^status closed)
(state <s> ^door-status <rclk-rram>)

Gr3

CEs from

CE3

CE2CE1

Gr2 Gr3 . . Grn-1 Grn

Figure 6-8: The constrained bilinear network.

The speedups obtained in the during-chunking runs are a
combination of the speedups obtained in the without chunking

ing the end of a cycle is very difficult; which implies that runs, the update phase and the after-chunking runs (described
switching from multiple task queues to a single task queue is below). We will therefore not present those speedups here.
also difficult.

Figure 6-10 presents the results for the three tasks after
A major cause of the small cycles in Soar is the initial chunking. The measurements were done on a system with

decisions for filling up the context slots (problem-space, state, multiple task queues. We see an increase in parallelism with
operator) in a subgoal. Recall that when the problem-solver chunking in Eight-puzzle and Strips. The Cypress run after
in Soar reaches an impasse, a subgoal is generated automati- chunking is very short and therefore inconclusive with respect
cally. Initial decisions about filling up the roles in this subgoal to the impact of chunking on parallelism. The biggest in-
are made serially; and very little matching is required to make crease is in the Eight-puzzle. This after chunking run in the
these decisions. We expect that the future versions of Soar Eight-puzzle is the case where maximum speedup is seen in
will make the initial context decisions in parallel. Thus the the system  about 10 fold with 13 match processes.
intensity of the small-cycle problem will be reduced by a
large amount. Another factor for the small cycles is Figure 6-11 shows a histogram of the percentage of tasks
synchronous elaboration cycles. This is dicussed in Section 7. (node-activations) per cycle without chunking in the eight

puzzle. Each interval in the histogram corresponds to 25
6.3. Effect of Chunking on Parallelism tasks/cycle. We see that 60% or more of the cycles have less

There are two aspects to the study of the effect of chunking than 100 tasks per cycle. Very few (about 3%) of the cycles
on parallelism. As described earlier, chunking requires updat- have 1000 or more tasks per cycle. Figure 6-12 shows a
ing the state in the productions at run-time. Updating is thus similar histogram of tasks per cycle for the eight puzzle run
an important part of a during chunking run. It is therefore after chunking. We see that now, over 30% of the cycles have
interesting to see the speedups obtained while updating the 1000 or more tasks in them. We have already seen that small
productions. The second, more important aspect is the impact cycles typically provide low parallelism, while the larger
of chunking on parallelism. We will first present the cycles provide more parallelism. This partly explains the in-
speedups obtained in updating productions. We will then dis- crease in parallelism. The decrease in small cycles is to be
cuss the impact of chunking on parallelism. expected, since after chunking, the problem solver does not

use the subgoaling mechanism to reach a solution. (Recall
Figure 6-9 presents the speedups obtained in the update

0

5

10

15

20

25

30

35

P
er

ce
nt

ag
e

of
 c

yc
le

s

0 200 400 600 800 1000 1200
Number of tasks/cycle

Figure 6-12: Eight-puzzle after chunking:
tasks/cycle vs. percentage cycles.0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

S
pe

ed
up

s

0 2 4 6 8 10 12 14

Number of Match Processes

 Eight-puzzle: Uniproc. 111.2
 Strips: Uniproc. 30.6
 Cypress: Uniproc. 9.5

Figure 6-10: Speedups after chunking, multiple task queues. tion systems. In these systems the limited amount of com-
putation done per cycle limits the amount of available paral-
lelism. However, in learning production systems such as

that the small cycles were caused by initialization in Soar, the match computation may not remain limited. The
subgoals). machine-learning literature contains some analysis of systems

which add such large numbers of productions [11]. That
analysis indicates that there is an increase in the computation
per cycle done in such systems. We have already seen such
an increase, although on a small scale in this section. Thus the
10-20 fold empirical bound does not apply to learning produc-
tion systems.

7. Future Work
Soar is evolving and acquiring new domains of application.

Some of the future modifications and new applications will
impact the matching procedure. The effect of these changes
on parallelism needs to be understood. We list two planned
modifications, which would seem to lead to an increase in

0

5

10

15

20

25

30

35

P
er

ce
nt

ag
e

of
 c

yc
le

s

0 200 400 600 800 1000 1200
Number of tasks/cycle

parallelism:Figure 6-11: Eight-puzzle without chunking:
1. The elaboration cycles in Soar will be changedtasks/cycle vs. percentage cycles.

to fire asynchronously. Synchronization will
only be enforced at the level of decision cycles,
not at the level of elaboration cycles.

The other reason for the increase in parallelism can also be
2. A Soar input/output module is under construc-understood by observing that there is an increase in cycles

tion. This, in conjunction with new applicationswith 1000 or more tasks in them. These cycles are a result of
in fields such as Robotics, is expected to cause athe increase in the affect-set size, i.e., increase in the number
significant increase in the rate of change ofof productions processed in a cycle. This increase has come
working memory, and hence increase the paral-about due to the addition of the chunks: in some cycles, these
lelism.

chunks have to be processed along with the original set of
productions. This adds to the parallelism in those cycles. In All the tasks presented in this paper perform a serial heuris-
the particular eight-puzzle example, the increase in tic search. However, Soar tasks can also perform parallel
tasks/cycle is particularly steep, because the eight-puzzle heuristic search. One of the items that needs to be inves-
chunks are expensive [20], i.e., they require a large number of tigated is the impact of such parallel heuristic search on paral-
tasks for processing. In Strips the gains are smaller, because lelism. Though such search will increase the amount of paral-
the chunks generate correspondingly fewer node-activations. lelism, it will also generate a lot of additional work. Thus

increased parallelism could get lost in offsetting the additional
Previous research on parallelism in production systems es-

work, providing no real speedup.
tablishes that a limited amount (10-20 fold) of parallelism is
available in production systems [5, 6]. The production sys- As was seen in this paper, good speedups were not ach-
tems considered in this research were non-learning produc-

ieved in some Soar tasks. A possible avenue of investigation References
is to equip the system with diagnostic tools to automatically

1. Fikes, R., Hart, P., and Nilsson, N. "Learning and Execut-deduce the causes of the low speedups. For example, to
ing Generalized Robot Plans". Artificial Intelligence 3, 1

identify long chains, the system can look at the last few node (1972), 251-288.
activations on the cycles with low parallelism. The system

2. Forgy, C. L. OPS5 User’s Manual. Tech. Rept. CMU-can then make adaptive changes, such as introducing bilinear
CS-81-135, Computer Science Department, Carnegie Mellonnetworks, to increase the speedups. Other areas for future
University, July, 1981.study include the effects of chunking over long periods of

time on parallelism. A longer term goal includes the op- 3. Forgy, C. L. "Rete: A Fast Algorithm for the Many
timization of the Lisp-based portion of the system, its conver- Pattern/Many Object Pattern Match Problem". Artificial In-
sion to C and parallelizing other areas of the system besides telligence 19, 1 (1982), 17-37.
match.

4. Forgy, C. L. The OPS83 Report. Tech. Rept. CMU-
CS-84-133, Computer Science Department, Carnegie Mellon

8. Summary University, May, 1984.
In this paper, we have explored techniques for efficient

5. Gupta, A.. Parallelism in Production Systems. Morgan-parallel implementation of Soar, a significant AI system. This
Kaufman, Los Altos, California, 1987.provided a unique opportunity to study the match parallelism

of a learning production system. We presented techniques for 6. Gupta, A., Forgy, C. L., Kalp, D., Newell, A., & Tambe.
M. Results of Parallel Implementations of OPS5 on theadding productions and updating their state at run-time. We
Encore Multiprocessor. Proceedings of the International Con-presented the speedups obtained in the match on our system
ference on Parallel Processing, August, 1988. To appear.and the effects of chunking on the speedups. We showed that

Soar/PSM-E is capable of achieving significant speedups. 7. Laird, J. E. Universal Subgoaling. In Laird, J.E.,
The discussion of the impact of chunking on parallelism in- Rosenbloom, P.S., and Newell, A., Ed., Universal Subgoaling
dicates that the opportunities for exploiting parallelism should and Chunking: The Automatic Generation and Learning of
increase a great deal in Soar systems that add a large number Goal Hierarchies, Kluwer Academic Publishers, Boston,
of chunks. We also analyzed speedups in detail and showed Massachusetts, 1986, pp. 1-131.
that two effects limit the parallelism in the system: short

8. Laird, J. E., Newell, A., and Rosenbloom, P. S. "Soar: An
cycles and long chains. Some solutions to these problems Architecture for General Intelligence". Artifical Intelligence
were proposed, which would increase the speedups achiev- 33, 1 (1987), 1-64.
able. However, other modules in Soar still need to be op-

9. Laird, J. E., Rosenbloom, P. S., & Newell, A. "Chunkingtimized for this system to be useful as a real engine for Soar
in Soar: The Anatomy of a General Learning Mechanism".users.
Machine Learning 1, 1 (1986), 11-46.

10. Lehr, T. F. The Implementation of a Production SystemAcknowledgement
Machine. Proceedings of the Hawaii International Con-We thank John Laird, Paul Rosenbloom and Peter
ference on Systems Sciences, January, 1986, pp. 177-205.Steenkiste for helpful comments on earlier drafts of this

paper. We also thank Kathy Swedlow for her technical edit- 11. Minton, S. Selectively Generalizing Plans for Problem-
ing. solving. Proceedings of the Ninth International Joint Con-

ference on Artificial Intelligence, August, 1985, pp. 596-599.
This research was sponsored by Encore Computer Corpora-

12. Miranker, D. P. Treat: A Better Match Algorithm for AItion, Digital Equipment Corporation and by the Defense Ad-
Production Systems. Proceedings of AAAI-87, August, 1987,vanced Research Projects Agency (DOD), ARPA Order No.
pp. 42-47.4976 under contract F33615-87-C-1499 and monitored by

the: 13. Newell, A. Reasoning, Problem Solving and Decision
Processes: The Problem Space as a Fundamental Category.Avionics Laboratory
In Nickerson, N., Ed., Attention and Performance VIII,Air Force Wright Aeronautical Laboratories
Lawrence Erlbaum and Associates, Hillsdale, New Jersey,Aeronautical Systems Division (AFSC)
1981, pp. 693-718.Wright-Patterson AFB, OHIO 45433-6543

14. Newell, A. Unified Theories of Cognition. The William
Anoop Gupta is supported by DARPA contract James Lectures. Harvard University. Available in videocas-

MDA903-83-C-0335 and an award from the Digital Equip- sette from Harvard Psychology Department.
ment Corporation. The views and conclusions contained in

15. Oflazer, K. Partitioning in Parallel Processing of Produc-this document are those of the authors and should not be
tion Systems. Tech. Rept. CMU-CS-87-114, Computerinterpreted as representing the official policies, either ex-
Science Department, Carnegie Mellon University, March,pressed or implied, of Encore Computer Corporation, Digital
1987.

Equipment Corporation and the Defense Advanced Research
Projects Agency or the US Government.

16. Rosenbloom, P. S., Laird, J. E., McDermott, J., Newell,
A., and Orciuch, E. "R1-Soar: An Experiment in Knowledge-
intensive Programming in a Problem-solving Architecture".
IEEE Transactions on Pattern Analysis and Machine Intel-
ligence 7, 5 (1985), 561-569.

17. Schreiner, F. , Zimmerman, G. Pesa-1- A Parallel Ar-
chitecture for Production Systems. Proceedings of the Inter-
national Conference on Parallel Processing, August, 1987, pp.
166-169.

18. Steier, D. M. CYPRESS-Soar: A Case Study in Search
and Learning in Algorithm Design. Proceedings of the Tenth
International Joint Conference on Artificial Intelligence,
August, 1987, pp. 327-330.

19. Steier, D. E., Laird, J. E., Newell, A., Rosenbloom, P. S.,
Flynn, R. A., Golding, A., Polk, T. A., Shivers, O. G., Unruh,
A., & Yost, G. R. Varieties of Learning in Soar: 1987.
Proceedings of the Fourth International Workshop on
Machine Learning, June, 1987, pp. 300-311.

20. Tambe, M. & Newell, A. Why Some Chunks Are Expen-
sive. Proceedings of the Fifth International Workshop on
Machine Learning, June, 1988. To appear.

21. Tenorio, M. F. M. and Moldovan, D. E. Mapping
Production Systems Into Multi-processors. Proceedings of
the International Conference on Parallel Processing, August,
1985, pp. 56-62.

Table of Contents
1. Introduction 1
2. Background 2

2.1. OPS5 2
2.2. The RETE Matching Algorithm 2
2.3. PSM-E: Parallel Implementation of OPS5 on the Encore Multimax 3

3. Soar 4
4. Organization of the Soar/PSM-E System 5
5. Extensions Required to Support Soar 5

5.1. Run Time Addition of Productions 5
5.2. Run Time Update of State 7

6. Results and Analysis 8
6.1. Speedups Without Chunking 8
6.2. Causes of the Low Speedups 10
6.3. Effect of Chunking on Parallelism 12

7. Future Work 13
8. Summary 14
Acknowledgement 14
References 14

List of Figures
Figure 2-1: An OPS5 production and its instantiation. 2
Figure 2-2: An example production and its network. 3
Figure 4-1: The organization of the Soar/PSM-E system. 5
Figure 5-1: The jumptable mechanism. 6
Figure 5-2: Adding a production at run-time. 6
Figure 6-1: Speedups without chunking, single task queue. 8
Figure 6-2: Contention for the Hash buckets. 9
Figure 6-3: Task-queue contention with increasing number of processes. 9
Figure 6-4: Speedup without chunking, multiple task queues. 10
Figure 6-5: Eight-puzzle: Speedups as a function of Tasks/cycle. 10
Figure 6-6: Eight-puzzle: Cycles with large numbers of tasks and low speedups 11
Figure 6-7: A long chain production. 11
Figure 6-8: The constrained bilinear network. 12
Figure 6-9: Speedups in the update phase, multiple task queues. 12
Figure 6-10: Speedups after chunking, multiple task queues. 13
Figure 6-11: Eight-puzzle without chunking: tasks/cycle vs. percentage cycles. 13
Figure 6-12: Eight-puzzle after chunking: tasks/cycle vs. percentage cycles. 13

List of Tables
Table 5-1: Number of CEs per chunk. 7
Table 5-2: Time for compiling chunks at run-time. 7
Table 6-1: The granularity of the tasks on the PSM. 10

